# CPU # Download the TensorFlow Serving Docker image and repo docker pull tensorflow/serving:latest-gpu
# GPU
# 建立tf資料夾 mkdir -p $(pwd)/tf TESTDATA="$(pwd)/tf" ### CPU ### docker run -t --rm -p 8501:8501 \ --name tf_serving \ -v "$TESTDATA:/models/fashion_model" \ -e MODEL_NAME=fashion_model \ tensorflow/serving & ### GPU ### docker run -t --runtime=nvidia -p 8501:8501 \ --name tf_serving_gpu \ -v "$TESTDATA:/models/fashion_model" \ -e MODEL_NAME=fashion_model \ tensorflow/serving:latest-gpu &
# Query the model using the predict API curl -d '{"instances": [1.0, 2.0, 5.0]}' \ -X POST http://localhost:8501/v1/models/half_plus_two:predict
import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt import json import requests fashion_mnist = keras.datasets.fashion_mnist (_, _), (test_images, test_labels) = fashion_mnist.load_data() test_images = test_images.reshape(test_images.shape[0], 28, 28, 1) data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:3].tolist()}) headers = {"content-type": "application/json"} json_response = requests.post('http://10.15.11.75:8501/v1/models/fashion_model:predict', data=data, headers=headers) print(json_response) predictions = json.loads(json_response.text)['predictions'] print(np.argmax(predictions[0]))
沒有留言:
張貼留言