Pandas Merge Tutorial
¶
Basic Merge Using a Dataframe Column¶
In [28]:
- import pandas as pd
- df1 = pd.DataFrame({
- "city": ["new york","chicago","orlando"],
- "temperature": [21,14,35],
- })
- df1
Out[28]:
In [29]:
- df2 = pd.DataFrame({
- "city": ["chicago","new york","orlando"],
- "humidity": [65,68,75],
- })
- df2
Out[29]:
In [30]:
- df3 = pd.merge(df1, df2, on="city")
- df3
Out[30]:
Type Of DataBase Joins¶
<img src="db_joins.jpg" height="800", width="800">
In [31]:
- df1 = pd.DataFrame({
- "city": ["new york","chicago","orlando", "baltimore"],
- "temperature": [21,14,35, 38],
- })
- df1
Out[31]:
In [32]:
- df2 = pd.DataFrame({
- "city": ["chicago","new york","san diego"],
- "humidity": [65,68,71],
- })
- df2
Out[32]:
In [33]:
- df3=pd.merge(df1,df2,on="city",how="inner")
- df3
Out[33]:
In [34]:
- df3=pd.merge(df1,df2,on="city",how="outer")
- df3
Out[34]:
In [35]:
- df3=pd.merge(df1,df2,on="city",how="left")
- df3
Out[35]:
In [36]:
- df3=pd.merge(df1,df2,on="city",how="right")
- df3
Out[36]:
indicator flag¶
In [37]:
- df3=pd.merge(df1,df2,on="city",how="outer",indicator=True)
- df3
Out[37]:
suffixes¶
In [38]:
- df1 = pd.DataFrame({
- "city": ["new york","chicago","orlando", "baltimore"],
- "temperature": [21,14,35,38],
- "humidity": [65,68,71, 75]
- })
- df1
Out[38]:
In [39]:
- df2 = pd.DataFrame({
- "city": ["chicago","new york","san diego"],
- "temperature": [21,14,35],
- "humidity": [65,68,71]
- })
- df2
Out[39]:
In [40]:
- df3= pd.merge(df1,df2,on="city",how="outer", suffixes=('_first','_second'))
- df3
Out[40]:
join¶
In [58]:
- df1 = pd.DataFrame({
- "city": ["new york","chicago","orlando"],
- "temperature": [21,14,35],
- })
- df1.set_index('city',inplace=True)
- df1
Out[58]:
In [59]:
- df2 = pd.DataFrame({
- "city": ["chicago","new york","orlando"],
- "humidity": [65,68,75],
- })
- df2.set_index('city',inplace=True)
- df2
Out[59]:
In [60]:
- df1.join(df2,lsuffix='_l', rsuffix='_r')
Out[60]:
沒有留言:
張貼留言